ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
J. Eduard Hoogenboom
Nuclear Science and Engineering | Volume 160 | Number 1 | September 2008 | Pages 1-22
Technical Paper | doi.org/10.13182/NSE160-01
Articles are hosted by Taylor and Francis Online.
Zero-variance Monte Carlo schemes have been discussed in the literature at several places. Taking a fresh look, it turns out that some authors made essential errors in their derivation and conclusions. We will prove that for a given estimator there is only one zero-variance scheme possible with a unique biasing of the source function and the transition and collision kernels. A practical demonstration of a zero-variance scheme will be shown numerically for a two-group homogeneous slab system treated by the two-direction transport model, which provides an analytical solution for the particle flux and adjoint functions.