ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Nam Zin Cho, Jaejun Lee
Nuclear Science and Engineering | Volume 159 | Number 3 | July 2008 | Pages 229-241
Technical Paper | doi.org/10.13182/NSE159-229
Articles are hosted by Taylor and Francis Online.
A coarse-mesh nodal method in cylindrical (r, ,z) geometry, e.g., of pebble bed reactors, based on the analytic function expansion nodal (AFEN) methodology, is described in this paper. Two unique features are (a) no use of transverse integration - allowing a nodal scheme in (r, ,z) geometry - and (b) nodal solution expressed in terms of analytic basis functions - leading to high accuracy and readily available reconstruction of homogeneous flux distributions. Additional features of multigroup formulation, two methods of void region treatment, and coarse-group-rebalance acceleration are implemented in the TOPS code and tested on several benchmark problems, including the Organisation for Economic Co-operation and Development/Nuclear Energy Agency PBMR-400 Benchmark Problem. The TOPS results are in excellent agreement with those of the VENTURE code, using significantly less computer time.