ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Tarcisio Passos Ribeiro de Campos, Aquilino Senra Martinez
Nuclear Science and Engineering | Volume 102 | Number 3 | July 1989 | Pages 211-218
Technical Paper | doi.org/10.13182/NSE89-A27475
Articles are hosted by Taylor and Francis Online.
A new method is proposed for the analytical calculation of resonance integrals. Resonance integrals of infinite cylindric fuel cells are calculated according to a very simple analytical method with a reasonable level of accuracy. An escape probability based on a rational approximation is used to represent the neutron transport among the cell regions. The expression obtained for the resonance integral is a function of the temperature, geometry, and fuel rod composition, as well as the neutron energy. The terms of the expression are combinations of the well-known function J(ξ,β) and its partial derivatives in β. The formulation can be used for all resonance types (narrow, intermediate, and wide). The method parameters depend on the resonance type and can be obtained as a function of a single parameter. For this parameter, a simple expression dependent on the resonance parameters is proposed.