ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
K. H. Böckhoff, A. D. Carlson, O. A. Wasson, J. A. Harvey, D. C. Larson
Nuclear Science and Engineering | Volume 106 | Number 2 | October 1990 | Pages 192-207
Technical Paper | doi.org/10.13182/NSE90-A27470
Articles are hosted by Taylor and Francis Online.
Continuing improvements in electron linear accelerators, and associated targets, detectors, and data acquisition systems, make facilities based on these neutron sources very productive in meeting nuclear data needs for fusion energy development. The operation of an electron linear accelerator is briefly outlined, and specific information about neutron-producing targets, available detector systems, and data acquisition capabilities for several of the most productive facilities is given. Data needs are reviewed in terms of reactions important to the fusion energy program, and several examples are given of data acquired at these facilities for these reactions. Much of the experimental data upon which nuclear data evaluations are based are measured at electron linacs, and they continue to be a valuable source of nuclear data for fusion reactor design.