ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
G. L. Varsamis, G. P. Lawrence, T. S. Bhatia, B. Blind, F. W. Guy, R. A. Krakowski, G. H. Neuschaefer, N. M. Schnurr, S. O. Schriber, T. P. Wangler, M. T. Wilson
Nuclear Science and Engineering | Volume 106 | Number 2 | October 1990 | Pages 160-182
Technical Paper | doi.org/10.13182/NSE90-A27468
Articles are hosted by Taylor and Francis Online.
Advances in high-current linear accelerator technology since the design of the Fusion Materials Irradiation Test facility have increased the attractiveness of a deuterium-lithium neutron source for fusion materials and technology testing. The conceptual design of such a source, which is aimed at meeting the near-term requirements of the high-flux high-energy International Fusion Materials Irradiation Facility, is discussed. The concept employs multiple accelerator modules providing deu-teron beams to two liquid-lithium jet targets oriented at right angles. This beam/target geometry provides much larger test volumes than can be attained with a single beam and target and produces significant regions of low neutron flux gradient. A preliminary beam dynamics design has been obtained for a 250-mA reference accelerator module. Neutron flux levels and irradiation volumes were calculated for a neutron source incorporating two such modules, and interaction of the beam with the lithium jet was studied using a thermal-hydraulic computer simulation. Approximate cost estimates are provided for a range of beam currents, and a possible facility staging sequence is suggested.