ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
F. H. Coensgen, T. A. Casper, D. L. Correll, C. C. Damm, A. H. Futch, B. G. Logan, A. W. Molvik
Nuclear Science and Engineering | Volume 106 | Number 2 | October 1990 | Pages 138-155
Technical Paper | doi.org/10.13182/NSE90-A27466
Articles are hosted by Taylor and Francis Online.
The design and performance of a relatively low-cost, plasma-based, 14-MeV deuterium-tritium neutron source for accelerated end-of-life testing of fusion reactor materials are described. An intense flux (up to 5 × 1018 n/m2·s) of 14-MeV neutrons is produced in a fully ionized high-density tritium target (ne ≈ 3 × 1021 m-3) by injecting a current of 150-keV deuterium atoms. The tritium plasma target and the energetic D + density produced by D0 injection are confined in a ≤0.16-m-diam column by a linear magnet set, which provides magnetic fields up to 12 T. Energy deposited by transverse injection of neutral beams at the midpoint of the column is transported along the plasma column to the end regions. Three variations of the neutron source design are discussed, differing in the method of control of the energy transport. Emphasis is on the design in which the target plasma density is maintained in a region where electron thermal conduction along the column is the controlling energy-loss process.