ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
F. H. Coensgen, T. A. Casper, D. L. Correll, C. C. Damm, A. H. Futch, B. G. Logan, A. W. Molvik
Nuclear Science and Engineering | Volume 106 | Number 2 | October 1990 | Pages 138-155
Technical Paper | doi.org/10.13182/NSE90-A27466
Articles are hosted by Taylor and Francis Online.
The design and performance of a relatively low-cost, plasma-based, 14-MeV deuterium-tritium neutron source for accelerated end-of-life testing of fusion reactor materials are described. An intense flux (up to 5 × 1018 n/m2·s) of 14-MeV neutrons is produced in a fully ionized high-density tritium target (ne ≈ 3 × 1021 m-3) by injecting a current of 150-keV deuterium atoms. The tritium plasma target and the energetic D + density produced by D0 injection are confined in a ≤0.16-m-diam column by a linear magnet set, which provides magnetic fields up to 12 T. Energy deposited by transverse injection of neutral beams at the midpoint of the column is transported along the plasma column to the end regions. Three variations of the neutron source design are discussed, differing in the method of control of the energy transport. Emphasis is on the design in which the target plasma density is maintained in a region where electron thermal conduction along the column is the controlling energy-loss process.