ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. Brandes, H. Daoud, U. Schmid, V. Drüke
Nuclear Science and Engineering | Volume 97 | Number 2 | October 1987 | Pages 89-95
Technical Paper | doi.org/10.13182/NSE87-A27457
Articles are hosted by Taylor and Francis Online.
The pebble-bed prototype thorium high-temperature reactor represents the second step of high-temperature gas-cooled reactor development in the Federal Republic of Germany. Nuclear commissioning of the plant began in August 1983 with the loading of the spherical elements, and first criti-cality was achieved in September 1983 with the loading of 198 180 spherical elements. A very good agreement of 0.004Δk was achieved between measured and calculated values. After full loading of the core with 674200 elements in October 1983, core physics tests were performed in air and nitrogen in August 1984 to verify the design calculations. In these tests the temperature coefficient, the control rod worths, and the reactivity of the reactor core were measured. The measured values of the temperature coefficient were within 10% of the expected values. The agreement between measured and expected control rod worths (5%) is excellent. The reactivity of the cold core with all rods withdrawn was determined to be 0.112 ± 0.005Δp. Taking into account values of the packing density of the spherical elements, which were higher than expected, the calculated value of 0.11Δp was in very good agreement.