ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Eugene Goldberg, Ronald L. Barber, Patrick E. Barry, Norman A. Bonner, James E. Fontanilla, Clyde M. Griffith, Robert C. Haighf David R. Nethaway, George B. Hudson
Nuclear Science and Engineering | Volume 91 | Number 2 | October 1985 | Pages 173-186
Technical Paper | doi.org/10.13182/NSE85-A27440
Articles are hosted by Taylor and Francis Online.
Tritium production cross sections have been inferred from direct measurements of tritium generated in wafers of 6LiH and 7LiH under bombardment by 15-MeV neutrons produced at the Lawrence Livermore National Laboratory's Rotating Target Neutron Source-I facility. Sealed in a thin-walled lead container, each hydride wafer was immersed in boiling mercury that first amalgamated the lead and then dissociated the LiH. The hydrogen, acting as a carrier, was directed to an electronic counter and mixed carefully with methane. The counting procedure provided an accurate measure of tritium originally generated in each wafer. The TART Monte Carlo code was employed in the analysis of the data. The tritium production cross section for 6Li exposed to 14.92-MeV neutrons is 32 ±3 mb and that for 7Li exposed to 14.94-MeV neutrons is 302 ± 18 mb.