ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. Wölfle, S. Sudár, S. M. Qaim
Nuclear Science and Engineering | Volume 91 | Number 2 | October 1985 | Pages 162-172
Technical Paper | doi.org/10.13182/NSE85-A27439
Articles are hosted by Taylor and Francis Online.
Aluminum samples, together with sets of 12 flux monitor foils having different reaction thresholds, were irradiated in 6 different deuteron/beryllium neutron fields (Ed = 17.5 to 30 MeV). The shapes of the neutron spectra were determined by spectrum unfolding, using the known excitation functions of the monitor nuclides and their measured activities. In a second calculational step, the excitation function for the f(n, t)+(n, tn)] process on 27Al was obtained from the neutron flux distributions and the measured tritium activities. At both calculational stages the iterative code SAND-II and the generalized least-squares unfolding code were applied, the latter yielding additionally the error covariance matrix. The excitation function thus obtained has a maximum cross-section value of ∼8 mb at 25.5 MeV and compares well with the values obtained using monoenergetic neutrons in the region of 14 to 19 MeV.