ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
I. Dilber and E. E. Lewis
Nuclear Science and Engineering | Volume 91 | Number 2 | October 1985 | Pages 132-142
Technical Paper | doi.org/10.13182/NSE85-A27436
Articles are hosted by Taylor and Francis Online.
Nodal diffusion and transport methods are formulated variationally in terms of the even-parity form of the neutron transport equation and applied to problems in X-Y geometry. The resulting functional guarantees the satisfaction of nodal balance, regardless of the form of the space-angle trial function within the node or on its boundaries. Deletion of X-Y cross terms from the within-node flux approximations yields equations that are strikingly similar to conventional diffusion nodal methods; inclusion of the terms obviates ad hoc approximations to the transverse leakage. Transport and diffusion nodal methods differ only in the angular basis functions. In both cases the equations are first solved for partial current moments along nodal interfaces. Subsequently, the detailed flux distribution and the node-averaged scalar flux values are obtained from the spatial trial functions. Results are given for fixed-source two-dimensional problems in the P1 and P3 approximations. Code vectorization and generalization to three dimensions are discussed.