ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
I. Dilber and E. E. Lewis
Nuclear Science and Engineering | Volume 91 | Number 2 | October 1985 | Pages 132-142
Technical Paper | doi.org/10.13182/NSE85-A27436
Articles are hosted by Taylor and Francis Online.
Nodal diffusion and transport methods are formulated variationally in terms of the even-parity form of the neutron transport equation and applied to problems in X-Y geometry. The resulting functional guarantees the satisfaction of nodal balance, regardless of the form of the space-angle trial function within the node or on its boundaries. Deletion of X-Y cross terms from the within-node flux approximations yields equations that are strikingly similar to conventional diffusion nodal methods; inclusion of the terms obviates ad hoc approximations to the transverse leakage. Transport and diffusion nodal methods differ only in the angular basis functions. In both cases the equations are first solved for partial current moments along nodal interfaces. Subsequently, the detailed flux distribution and the node-averaged scalar flux values are obtained from the spatial trial functions. Results are given for fixed-source two-dimensional problems in the P1 and P3 approximations. Code vectorization and generalization to three dimensions are discussed.