ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
W. E. Loewe, W. A. Turin, C. W. Pollock, A. C. Springer, B. L. Richardson
Nuclear Science and Engineering | Volume 85 | Number 2 | October 1983 | Pages 87-115
Technical Paper | doi.org/10.13182/NSE83-A27418
Articles are hosted by Taylor and Francis Online.
The results of a program are reported whose objective has been to establish the reliability and accuracy of tissue kerma estimates near the ground, out to deep penetration ranges, from a point neutron source in an air-over-ground geometry. The results take the form of expected error in calculated neutron and secondary gamma-ray kerma out to 2-km range for any neutron source height and energy spectrum. In the first of two approaches, experimental data permitting absolute evaluation in one dimension is used in conjunction with an evaluated calculational procedure for two dimensions to obtain overall error estimates. In the second approach, errors obtained from comparisons of measurement and calculation in air-over-ground geometry are evaluated to obtain overall error estimates. When the results of these two approaches are averaged, it can be concluded with confidence that kerma to 2 km will probably be calculated to be 10 to 15% lower than measured values for neutrons and 20 to 25% lower for gamma rays when this cross-section set and recommended calculational procedure or equivalents are used.