ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
ANS Congressional Fellowship program seeks 2027 applicants
Earlier this week, ANS opened the application process for the 2027 Glenn T. Seaborg Congressional Science and Engineering Fellowship, offering ANS members an opportunity to contribute directly to federal policymaking in Washington, D.C. Applications are due June 6.
Donald R. Olander, Albert J. Machiels, Eugen Muchowski
Nuclear Science and Engineering | Volume 79 | Number 2 | October 1981 | Pages 212-227
Technical Paper | doi.org/10.13182/NSE81-A27410
Articles are hosted by Taylor and Francis Online.
Natural salt deposits contain small brine inclusions that can be set into motion by a temperature gradient arising from storage of nuclear wastes in the salt. Inclusions totally filled with liquid move up the temperature gradient, but cavities that are filled partly with liquid and partly by an insoluble gas move in the opposite direction. The velocities of these gas-liquid inclusions are calculated from a model that includes heat transport in the gas-liquid-solid composite medium, vapor transport of water in the gas bubble, and molecular and thermal diffusion of salt in the liquid phase as the principal mechanisms causing cavity motion. An analytical expression for the inclusion velocity is obtainable by approximating the cubical cavity in the solid as a spherical hole containing a central gas bubble and an annular shell of liquid. The theory predicts a change in the migration direction at a critical volume fraction gas in the cavity. For NaCl, the theory gives the velocities of migration down the temperature gradient which are in satisfactory agreement with experimental data.