ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
ANS Congressional Fellowship program seeks 2027 applicants
Earlier this week, ANS opened the application process for the 2027 Glenn T. Seaborg Congressional Science and Engineering Fellowship, offering ANS members an opportunity to contribute directly to federal policymaking in Washington, D.C. Applications are due June 6.
R. C. Little, R. C. Block, D. R. Harris, R. E. Slovacek, O. N. Carlson
Nuclear Science and Engineering | Volume 79 | Number 2 | October 1981 | Pages 175-183
Technical Paper | doi.org/10.13182/NSE81-A27406
Articles are hosted by Taylor and Francis Online.
The neutron total cross section and the shape of the neutron capture cross section of 232Th have been measured in the energy range from 0.006 to 18 eV at the Rensselaer Polytechnic Institute Gaerttner Linac Laboratory. The neutron total cross section was obtained from transmission measurements using metallic 232Th samples and a 6Li glass neutron detector. The total cross section above 0.1 eV is in good agreement with the ENDF/B-V evaluation. Below 0.1 eV, where Bragg scattering is important, the measured total cross section is significantly lower than the evaluated total cross section. The shape of the neutron capture cross section was obtained from 0.009 to 18 eV using a ThO2 sample and a 1.25-m-diam liquid scintillator detector. The shape of the measured capture cross section above 0.1 eV is in good agreement with a recent shape measurement at Brookhaven National Laboratory. The neutron capture cross section below 0.1 eV is found to increase less rapidly than 1/v with decreasing neutron energy.