ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. D. Lawrence, J. J. Dorning
Nuclear Science and Engineering | Volume 64 | Number 2 | October 1977 | Pages 492-507
Technical Paper | doi.org/10.13182/NSE77-A27385
Articles are hosted by Taylor and Francis Online.
A smoothing and extrapolation method is applied to the point kinetics equations and the one-dimensional space-dependent reactor kinetics equations. The simple smoothing procedure is shown to be very efficient in reducing the oscillatory errors that occur when the standard Padé(1,1) and Crank-Nicholson approximations are applied to stiff reactor kinetics equations. Fourth-order accuracy is achieved by applying a single Richardson extrapolation (on a global basis) to the smoothed results obtained from values calculated using two time-step grids. The numerical results for point kinetics demonstrate that the method is particularly efficient for very stiff problems such as subcritical and delayed supercritical transients in fast reactors. Application of the method to two one-dimensional kinetics benchmark problems solved using a standard space-dependent computer code that utilizes the Crank-Nicholson approximation leads to significant reduction in the overall computational effort required to achieve a given accuracy.