ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
A. K. Agrawal, J. G. Guppy, I. K. Madni, V. Quan, W. L. Weaver III, J. W. Yang
Nuclear Science and Engineering | Volume 64 | Number 2 | October 1977 | Pages 480-491
Technical Paper | doi.org/10.13182/NSE77-A27384
Articles are hosted by Taylor and Francis Online.
The transient simulation of a liquid-metal fast breeder reactor (LMFBR) plant requires (a) modeling of all processes that may be encountered and (b) the development of numerical methods to solve them. All models needed for the thermohydraulic simulation of the whole plant are formulated in this paper. We examine numerical techniques required to solve the governing equations, which are hyperbolic and parabolic partial-differential equations and ordinary differential equations. It appears that the implicit (or partially implicit) scheme is most suitable to meet both the stability and accuracy requirements. A new approach, labeled as the multistep scheme, to efficiently solve the entire system is then presented and illustrated through an example. For a simplified test problem, the multistep scheme has been found to be more efficient (by a factor of 2 to 3) than the commonly used single-step methods. This effort has resulted in the creation of a system transient simulation code, called SSC, for LMFBRs.