ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
E. E. Lewis
Nuclear Science and Engineering | Volume 64 | Number 2 | October 1977 | Pages 279-293
Technical Paper | doi.org/10.13182/NSE77-A27370
Articles are hosted by Taylor and Francis Online.
The methods available for solution of the time-independent neutron transport problems arising in the analysis of nuclear systems are examined. The merits of deterministic and Monte Carlo methods are briefly compared. The capabilities of deterministic computational methods derived from the first-order form of the transport equation, from the second-order even-parity form of this equation, and from integral transport formulations are discussed in some detail. Emphasis is placed on the approaches for dealing with the related problems of computer memory requirements, computational cost, and achievable accuracy. Attention is directed to some areas where problems exist currently and where the need for further work appears to be particularly warranted.