ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Ryuji Koga
Nuclear Science and Engineering | Volume 61 | Number 2 | October 1976 | Pages 239-249
Technical Paper | doi.org/10.13182/NSE76-A27357
Articles are hosted by Taylor and Francis Online.
A burnup control problem during a reactor core life is considered and solved by making use of a neutron-governing equation that is particularly devised to fit power reactors. Space-dependent parameters are expanded using Walsh functions, and the burnup process is described in terms of the expansion coefficients. By applying the Walsh-function expansion to a newly devised neutron-governing equation, CUMULUS, the criticality condition is established through a more simplified approach, and the system structure of a two-region reactor can be illustrated graphically. Using the above burnup model, an optimal control problem to maximize the average burnup at the end of a core life is considered, and numerical test problems are solved.