ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Ryuji Koga
Nuclear Science and Engineering | Volume 61 | Number 2 | October 1976 | Pages 239-249
Technical Paper | doi.org/10.13182/NSE76-A27357
Articles are hosted by Taylor and Francis Online.
A burnup control problem during a reactor core life is considered and solved by making use of a neutron-governing equation that is particularly devised to fit power reactors. Space-dependent parameters are expanded using Walsh functions, and the burnup process is described in terms of the expansion coefficients. By applying the Walsh-function expansion to a newly devised neutron-governing equation, CUMULUS, the criticality condition is established through a more simplified approach, and the system structure of a two-region reactor can be illustrated graphically. Using the above burnup model, an optimal control problem to maximize the average burnup at the end of a core life is considered, and numerical test problems are solved.