ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K. V. N. Sarma, K. Narasimha Murty, V. V. V. Subrahmanyam
Nuclear Science and Engineering | Volume 61 | Number 2 | October 1976 | Pages 195-200
Technical Paper | doi.org/10.13182/NSE76-A27352
Articles are hosted by Taylor and Francis Online.
The external bremsstrahlung (EB) spectra generated by the complete absorption of 91Y and 204Tl beta rays in aluminum, copper, tin, and lead are experimentally measured with a multi-channel NaI(Tl) scintillation spectrometer along with a suitable geometrical arrangement. After being corrected for different possible factors, the measured EB distributions are compared with the modified Bethe-Heitler theory. It is observed that except in the case of very light elements, like aluminum, where there is an exact coincidence between theory and experiment, in general, the experimental values are greater than the theoretical ones. This difference increases with increasing photon energy and also with increasing atomic number of the target element, an observation found to compare favorably with most of the earlier findings.