ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
K. V. N. Sarma, K. Narasimha Murty, V. V. V. Subrahmanyam
Nuclear Science and Engineering | Volume 61 | Number 2 | October 1976 | Pages 195-200
Technical Paper | doi.org/10.13182/NSE76-A27352
Articles are hosted by Taylor and Francis Online.
The external bremsstrahlung (EB) spectra generated by the complete absorption of 91Y and 204Tl beta rays in aluminum, copper, tin, and lead are experimentally measured with a multi-channel NaI(Tl) scintillation spectrometer along with a suitable geometrical arrangement. After being corrected for different possible factors, the measured EB distributions are compared with the modified Bethe-Heitler theory. It is observed that except in the case of very light elements, like aluminum, where there is an exact coincidence between theory and experiment, in general, the experimental values are greater than the theoretical ones. This difference increases with increasing photon energy and also with increasing atomic number of the target element, an observation found to compare favorably with most of the earlier findings.