ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Hongyu Zhou, Fuguo Deng, Xiaoji Ding, Ming Hua, Qiaoge Zhu, Chao Wang, Qiang Zhao, Guoying Fan
Nuclear Science and Engineering | Volume 157 | Number 3 | November 2007 | Pages 354-367
Technical Note | doi.org/10.13182/NSE07-A2733
Articles are hosted by Taylor and Francis Online.
The discrete gamma radiation in the interaction of 14.9-MeV neutrons and a natural copper sample is investigated with the total gamma radiation measurement technique. One hundred seven prompt gamma rays, which come mainly from the reactions (n,n'), (n,2n), (n,np), (n,d), (n,p) and (n,) of 63Cu and 65Cu, are identified by a high-resolution gamma-ray analysis code. According to the systematic knowledge of 14.9-MeV neutron-induced 63,65Cu(n,x) reactions, nine final nuclei are identified, and 139 possible transitions are designated. The differential elemental production cross sections of 107 gamma lines at 90 deg and 79 gamma lines at 55 deg are determined. The nine integral isotopic cross sections of 11 reaction channels including 63Cu(n,n')63Cu, 63Cu(n,2n)62Cu, 63Cu[(n,np) + (n,d)]62Ni, 63Cu(n,p)63Ni, 63Cu(n,)60Co, 65Cu(n,n')65Cu, 65Cu(n,2n)64Cu, 65Cu[(n,np) + (n,d)]64Ni, and 65Cu(n,p)65Ni are also obtained. The present results are in good agreement with some recent experimental and evaluated results.