ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
S. C. Wilson, S. R. Biegalski, R. L. Coats
Nuclear Science and Engineering | Volume 157 | Number 3 | November 2007 | Pages 344-353
Technical Paper | doi.org/10.13182/NSE06-28
Articles are hosted by Taylor and Francis Online.
The primary shutdown mechanism of all-metal nuclear assemblies engaging in pulsed operations is thermal expansion of the fuel material. Typically, a fuel temperature coefficient of reactivity is acquired by building the apparatus and fitting the operational data to the Nordheim-Fuchs kinetics equations. This value may vary as a function of reactivity insertion because of thermomechanical effects in the fuel material, which leads to uncertainty regarding untested reactor designs. This paper presents a computational method for modeling power, temperature, and thermoelastic displacement behavior of a spherical Godiva-like assembly during a prompt supercritical excursion and provides a way of determining fuel temperature coefficients of reactivity without the use of operational data.