ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
P. Mohanakrishnan, H. C. Huria
Nuclear Science and Engineering | Volume 68 | Number 2 | November 1978 | Pages 220-226
Technical Note | doi.org/10.13182/NSE78-A27294
Articles are hosted by Taylor and Francis Online.
A theoretical analysis of the reactivities of experimentally measured uniform light-water-moderated and -reflected PuO2 in UO2 lattices and Pu(NO3)4 solutions is presented here. The mixed-oxide single-rod lattices are homogenized by the use of multigroup integral transport theory, and diffusion theory is used for the cylindrical core calculations. The cross sections are derived from the WIMS library. The homogeneous spherical Pu(NO3)4 solutions are analyzed by discrete-ordinates transport theory. Due to the small size of these assemblies, it is necessary that one-dimensional core calculations also be performed with a cross-section energy-group structure that can accurately represent neutron slowing down and thermalization at the core-reflector interface. Due to the uncertainty present in the Battelle Northwest Laboratories analyses of the mixed-oxide lattices, the agreement of our predictions for these lattices with measurement is considered to be more satisfactory. Our reactivity predictions agree generally within +0.6% of measurements for the mixed-oxide lattices and within 1% for the solution systems.