ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. R. Hofmann
Nuclear Science and Engineering | Volume 68 | Number 1 | October 1978 | Pages 73-90
Technical Paper | doi.org/10.13182/NSE78-A27272
Articles are hosted by Taylor and Francis Online.
A model has been developed to describe the transient pressure field within the interconnected porosity of solid mixed-oxide fast reactor fuel during a reactor transient. The pore gas may be composed of up to two distinct chemical species, so that gas released from fuel grains may differ chemically from the fill gas originally present within the porosity of the fuel. The volume expansion of fuel upon melting is accounted for, but mechanical deformation of the solid fuel is not modeled. Results are presented for a hypothetical unprotected transient over-power accident in a gas-cooled fast reactor with ramp rates of 0.10, 1.0, and 10.0 dollar/s. In these calculations, fuel cladding failure is computed from a linear accumulative damage law and a Larson-Miller parameter correlation.