ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Herbert Bachmann, Ulrike Fritscher, Friedbert W. Kappler, Detlef Rusch, Heinrich Werle, Hans W. Wiese
Nuclear Science and Engineering | Volume 67 | Number 1 | July 1978 | Pages 74-84
Technical Paper | doi.org/10.13182/NSE78-A27238
Articles are hosted by Taylor and Francis Online.
Measured and calculated neutron spectra from a sphere of lithium metal with natural isotopic composition are compared. In the calculations, the investigation is concentrated on the SN method with nuclear data from ENDF/B-III for lithium and from KEDAK 3 for iron. A special partition of the angular coordinate, S19, was introduced to allow for the strong anisotropy of the neutron flux in the radial direction. For the proper treatment of the anisotropic elastic scattering, a new technique for improved, extended, and consistent transport approximation up to T5 is used. These ameliorations being introduced, it is shown that the nonelastic scattering is treated inadequately with respect to the angular and energetic distribution of the outcoming neutrons. The investigation is completed by a comparison of the measured and calculated space-dependent tritium production rate, in which the discrepancy is found consistent with the discrepancy in the neutron spectra. Furthermore, we propose that the 7Li(n,n′α) cross section should be reduced by 15 to 20% with respect to the ENDF/B-III value.