ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. T. Karatzas, G. P. Couchell, B. K. Barnes, L. E. Beghian, P. Harihar, A. Mittler, D. J. Pullen, E. Sheldon, N. B. Sullivan
Nuclear Science and Engineering | Volume 67 | Number 1 | July 1978 | Pages 34-53
Technical Paper | doi.org/10.13182/NSE78-A27235
Articles are hosted by Taylor and Francis Online.
Absolute 125-deg differential gamma-ray production cross sections have been measured for 21 gamma rays produced in natural chromium by the (n,n′γ) reaction in the incident neutron energy range from 0.84 to 3.97 MeV. The pulsed beam time-of-flight technique was employed for background reduction. The data were corrected for neutron multiple scattering and neutron and gamma-ray attenuations in the scattering sample. Angle-integrated gamma-ray production cross sections were inferred from the differential measurements using gamma-ray angular distributions obtained from compound nucleus statistical model calculations. On the basis of the angle-integrated cross sections and measured branching ratios, neutron inelastic scattering cross sections were deduced for 22 energy levels in the four naturally occurring isotopes of chromium. These results are compared to previous measurements and the Evaluated Nuclear Data File (ENDF/B-IV, MAT 1191). The present measurements suggest that in the threshold energy region for inelastic neutron scattering to each of the first excited 2+-states in 50,52,54Cr, the cross sections are significantly overestimated in ENDF/B-IV.