ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
S. H. Jiang, H. Werle
Nuclear Science and Engineering | Volume 66 | Number 3 | June 1978 | Pages 354-362
Technical Paper | doi.org/10.13182/NSE78-A27218
Articles are hosted by Taylor and Francis Online.
The 252Cf fission neutron-induced gamma fields in iron have been investigated experimentally and theoretically. The gamma leakage spectra from a series of relatively small iron spheres (15 to 35 cm in diameter) and the space-dependent gamma spectra within a relatively large (∼100- × 100- × 100-cm) steel pile have been measured with an absolutely calibrated Si(Li). Compton spectrometer in the energy range from 0.3 to 3 MeV. In addition, neutron spectra (with a spherical proton recoil proportional counter and a 3He semiconductor spectrometer) and 235U fission rates have been measured within the steel pile. The measurements are compared with calculations. For the calculation of the neutron spectra, we used the one-dimensional neutron transport code DTK (208 energy groups), and for the calculation of the gamma spectra, an extended version (51 energy groups) of the gamma transport code BIGGI 4T and an (n-γ) production cross-section matrix constructed from published data were used. The gamma flux induced by inelastic neutron scattering is well reproduced by the calculations, whereas that induced by capture processes is somewhat underestimated (∼20%).