ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Ashraf Atta, D. N. Fry, J. E. Mott, and W. T. King
Nuclear Science and Engineering | Volume 66 | Number 2 | May 1978 | Pages 264-268
Technical Note | doi.org/10.13182/NSE78-A27209
Articles are hosted by Taylor and Francis Online.
Fluctuations in the neutron flux caused by steam bubbles were analyzed to infer the average void fraction in the four fuel bundles that surround an in-core detector string in a boiling water reactor. The velocity of steam bubbles was inferred from the phase lag between axially displaced in-core fission detectors. This velocity, together with the measured power distribution and mass flow rate, was used to obtain the void fraction as a function of axial position. The results are in agreement with the predictions based on the Zuber et al. model, except near the top of the fuel channel.