ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Makio Ohkubo
Nuclear Science and Engineering | Volume 66 | Number 2 | May 1978 | Pages 217-228
Technical Paper | doi.org/10.13182/NSE78-A27202
Articles are hosted by Taylor and Francis Online.
Capture and scattering probabilities for neutrons impinging on thick samples were measured by the Japan Atomic Energy Research Institute Linac time-of-flight spectrometer and were compared with those by Monte Carlo calculation. Sweeping the incident neutron energy, the capture probability shows peaks at resonance energies in the case of a thin sample, whereas it shows dips for a thick sample, i.e., saturation occurs just at resonance energies. This saturation phenomenon is analyzed by Monte Carlo calculation for a distribution of path lengths of incident neutrons in the sample until capture in the sample. The saturation values of capture probability at resonance energies Pco are defined, and their dependence on the resonance parameters Γn/Γ is examined. The relations between Pco and Γn/Γ, with parameters including recoil energy, are obtained by Monte Carlo calculation. The relations are verified by measurement of Pco for many resonances of various Γn/Γ values. With the relation, Γn/Γ can be determined from Pco, which is not sensitive to sample thickness.