ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Kiminori Shiba
Nuclear Science and Engineering | Volume 65 | Number 3 | March 1978 | Pages 492-507
Technical Paper | doi.org/10.13182/NSE78-A27180
Articles are hosted by Taylor and Francis Online.
Material bucklings have been determined as functions of 235U enrichment in UO2 (0.7, 1.2, and 1.5 wt% 235U), PuO2 enrichment in PuO2-UO2 (0.54 and 0.87 wt% PuO2), fissile content of plutonium (91 and 75% Pu-fissile), lattice pitch (Vmod/Vfuel: 7.4 and 9.9), and coolant void fraction. The reference loading of 1.2 wt% 235U-enriched UO2 clusters was progressively replaced by the test clusters. Buckling differences resulting from the substitutions were analyzed by the new second-order (iterative) perturbation method, on the assumption that neutron diffusion is isotropic and that no difference in diffusion coefficients exists between the two lattices. This analysis takes into account the effect of distortion in radial neutron flux distribution in the substituted core without any iterative correction procedure that is usually adopted in the first-order perturbation method. Also, it is not necessary in the case of the present analysis to introduce any usual intermediate region for taking into account the effect of spectrum mismatch between the two lattices. The material buckling differences between the test and reference lattices, which are in the range of −10.2 to 9.1 m−2, were determined within 3% of uncertainty.