ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Y. Gur, S. Yiftah
Nuclear Science and Engineering | Volume 65 | Number 3 | March 1978 | Pages 468-476
Technical Paper | doi.org/10.13182/NSE78-A27178
Articles are hosted by Taylor and Francis Online.
The currently used formalism for neutron cross-section representation in the unresolved resonance energy range is based on the statistical parameters of the population of Breit-Wigner resonances. The present work introduces practical formalisms, based on parametric representation of the shielding factor curves, by which the values of effective cross sections can be obtained simply and quickly in the unresolved range, and suggests their use for neutron data representation. These formalisms were found to be compatible with such existing codes as MC2, ETOX, HAMMER, ENDRUN, and MIGROS, and with such existing nuclear data files as ENDF/B and KEDAK. Each formalism is based on one interpolation scheme in temperature and one in σ0. The accuracy of four schemes in temperature and three schemes in σ0 was checked. Of these, three temperature schemes and one σ0 scheme were found to have better than 1% accuracy in the entire unresolved region, thus yielding a formalism with better than 2% accuracy for representation. Observed spatially dependent self-shielding factors are transformed into pseudo-background cross-section-dependent (Bondarenko-type) self-shielding factors. Numerical values of the transformation for 235U and 239Pu self-shielding factors are given. It is shown that the formalisms can be used for the preprocessing of current nuclear data files in the unresolved range.