ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Taro Ueki
Nuclear Science and Engineering | Volume 157 | Number 2 | October 2007 | Pages 119-131
Technical Paper | doi.org/10.13182/NSE07-A2717
Articles are hosted by Taylor and Francis Online.
A variance reduction method has been developed for the Monte Carlo calculation of electron emission energy profile induced by photon radiation. The spatial control of particle weight was exclusively investigated. It was derived that the photon weight in the electron range at an electron detection surface should be equal to the electron weight that is determined to be inversely proportional to the electron adjoint function. Therefore, the preliminary Monte Carlo calculation of the forward electron-only problem with the uniform electron source over the maximum electron range, maximum allowed energy, and all solid angles was conducted to create the photon and electron weight window. The photon weight window more than the maximum electron range away from the electron detection surface was made constant. Monte Carlo simulations of photon and electron coupled-transport were conducted for slab materials with photons normally incident on one side and the electron energy profile to be evaluated on the other side. Numerical results show that efficiency gain with respect to the simulation with no weight control is significant for slabs of typical low and high atomic number materials even if taking into account time spent on the preliminary Monte Carlo calculation of the electron adjoint function.