ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Gad Shani
Nuclear Science and Engineering | Volume 65 | Number 1 | January 1978 | Pages 183-187
Technical Note | doi.org/10.13182/NSE78-A27142
Articles are hosted by Taylor and Francis Online.
The hybrid fusion reactor is becoming an interesting and promising model. In the present Note, a method for controlling the breeding-fission ratio is investigated. Since 238U fission occurs mainly with fast neutrons and breeding occurs with intermediate and slow neutrons, an optimal ratio can be obtained by partial slowing down of the original 14.9-MeV neutrons. This is done using iron as the moderator. Uranium samples were irradiated with 14.9-MeV neutrons from a deuterium-tritium reaction with iron layers of various thicknesses between the samples and the neutron source. It was found that with a relatively thin layer of iron (12 cm), any breeding-fission ratio can be obtained within a range of two decades. The breeding rate changes by only 50% when the iron-slab thickness changes from 0 to 12 cm, while the fission rate follows (more or less) the 14-MeV neutron flux and drops by more than two decades. Good agreement was obtained between the measurement and the calculated results.