ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Gad Shani
Nuclear Science and Engineering | Volume 65 | Number 1 | January 1978 | Pages 183-187
Technical Note | doi.org/10.13182/NSE78-A27142
Articles are hosted by Taylor and Francis Online.
The hybrid fusion reactor is becoming an interesting and promising model. In the present Note, a method for controlling the breeding-fission ratio is investigated. Since 238U fission occurs mainly with fast neutrons and breeding occurs with intermediate and slow neutrons, an optimal ratio can be obtained by partial slowing down of the original 14.9-MeV neutrons. This is done using iron as the moderator. Uranium samples were irradiated with 14.9-MeV neutrons from a deuterium-tritium reaction with iron layers of various thicknesses between the samples and the neutron source. It was found that with a relatively thin layer of iron (12 cm), any breeding-fission ratio can be obtained within a range of two decades. The breeding rate changes by only 50% when the iron-slab thickness changes from 0 to 12 cm, while the fission rate follows (more or less) the 14-MeV neutron flux and drops by more than two decades. Good agreement was obtained between the measurement and the calculated results.