ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yinlu Han, Yuyang Shi, Zhengjun Zhang
Nuclear Science and Engineering | Volume 157 | Number 1 | September 2007 | Pages 78-94
Technical Paper | doi.org/10.13182/NSE07-A2714
Articles are hosted by Taylor and Francis Online.
According to the experimental data of total, nonelastic scattering cross sections and elastic scattering angular distributions of tungsten and its isotopes, a set of neutron optical model potential parameters is obtained. All of the reaction cross sections, angular distributions, energy spectra, -ray production cross sections, -ray production energy spectra, and the double-differential cross section for neutron, proton, deuteron, triton, helium, and alpha emission are calculated and analyzed for n + 180,182,183,184,186,natW at incident neutron energies from 0.1 to 250 MeV based on the nuclear model theory, which combines the optical model, the unified Hauser-Feshbach theory and exciton model, and the coupled channel theory. Theoretical calculations are compared with existing experimental data and other evaluated data from ENDF/B6.8 and JENDL-3.3.