ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jagdeep B. Doshi, Lawrence M. Grossman
Nuclear Science and Engineering | Volume 65 | Number 1 | January 1978 | Pages 106-129
Technical Paper | doi.org/10.13182/NSE78-A27130
Articles are hosted by Taylor and Francis Online.
A method of analysis is developed for nuclear reactor accident initiating events that are localized in space. The method is based on a flux factorization technique, accounting for the flux shape changes taking place near the region of perturbation. In the steady state, the neutron shape functions are expanded in a series of eigenfunctions of the steady-state group removal operator. During the unsteady state, the time-dependent group shape functions are expanded in a series of the same stationary eigenfunctions with time-dependent Fourier coefficients. An auxiliary function is added to this expansion to take account of the spatial variation of the spectral hardening of neutrons in the immediate vicinity of the disturbed region. From the resulting representation of the group shape functions, the equations to be satisfied by the time-dependent Fourier coefficients and the time-dependent auxiliary shape function due to the disturbed region are developed consistently. A typical large [1000-MW(e)] liquid-metal fast breeder reactor with two radial core zones of different enrichments is analyzed by the above method. The transient initiating perturbation is taken to be a specified rate of coolant voiding from a single subassembly in the reactor core. The results show a strong dependence of the reactivity added on the radial location of the voiding perturbation and on the rate of voiding.