ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
Jagdeep B. Doshi, Lawrence M. Grossman
Nuclear Science and Engineering | Volume 65 | Number 1 | January 1978 | Pages 106-129
Technical Paper | doi.org/10.13182/NSE78-A27130
Articles are hosted by Taylor and Francis Online.
A method of analysis is developed for nuclear reactor accident initiating events that are localized in space. The method is based on a flux factorization technique, accounting for the flux shape changes taking place near the region of perturbation. In the steady state, the neutron shape functions are expanded in a series of eigenfunctions of the steady-state group removal operator. During the unsteady state, the time-dependent group shape functions are expanded in a series of the same stationary eigenfunctions with time-dependent Fourier coefficients. An auxiliary function is added to this expansion to take account of the spatial variation of the spectral hardening of neutrons in the immediate vicinity of the disturbed region. From the resulting representation of the group shape functions, the equations to be satisfied by the time-dependent Fourier coefficients and the time-dependent auxiliary shape function due to the disturbed region are developed consistently. A typical large [1000-MW(e)] liquid-metal fast breeder reactor with two radial core zones of different enrichments is analyzed by the above method. The transient initiating perturbation is taken to be a specified rate of coolant voiding from a single subassembly in the reactor core. The results show a strong dependence of the reactivity added on the radial location of the voiding perturbation and on the rate of voiding.