ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
K. Matsubara, R. Oguma, M. Kitamura
Nuclear Science and Engineering | Volume 65 | Number 1 | January 1978 | Pages 1-16
Technical Paper | doi.org/10.13182/NSE78-A27121
Articles are hosted by Taylor and Francis Online.
An autoregressive (AR) model with pseudo-random binary sequence (PRBS) test signals was applied to the dynamics of the Japan Power Demonstration Reactor, a boiling water reactor (BWR). The decision of the order of the AR model was based on the Akaike criterion. Multi-input test signals of the PRBS were applied to the steam-flow control valve and the forced circulation pump speed control terminal. Seventeen variables including the instrumented fuel assemblies were observed. The AR model identification facilitated building the BWR dynamics model as a multivariable system. The experiment indicated that the BWR dynamics with rather intensive nonwhite noise interference was effectively represented by the AR model, which was compared with a linear theoretical dynamics model. The results suggested that the identified AR model plays an important role in verifying, modifying, and improving the theoretical dynamics model.