ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Brian R. Nease, Taro Ueki
Nuclear Science and Engineering | Volume 157 | Number 1 | September 2007 | Pages 51-64
Technical Paper | doi.org/10.13182/NSE07-A2712
Articles are hosted by Taylor and Francis Online.
A coarse-mesh projection method has been developed for the Monte Carlo calculation of dominant eigenvalue ratio [dominance ratio (DR)]. The first step of the method consists of the regression analysis of the multivariate time series from the coarse-mesh binning of the Monte Carlo fission source distribution. The second step is computation of the eigenvectors of the adjoint matrix of noise propagation. In general, projections on these eigenvectors can be utilized to compute important characteristics of the eigenmodes of fission source distribution. In this work, it has been proven that if the eigenvector corresponding to the largest eigenvalue of the aforementioned adjoint matrix is taken to be the vector for projection, the projected scalar time series follows the autoregressive process of order one with the root of characteristic polynomial, i.e., the autocorrelation coefficient, being the DR of fission source distribution. Numerical results are presented for four problems including one-energy-group checkerboard-type problems, a one-energy-group cube problem and a continuous-energy pressurized water reactor core problem. The strength of the method is twofold; (a) the elimination of the use of autoregressive moving average fitting, and (b) no need to optimize the order of fitting.