ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
P. Guenther, D. Havel, A. Smith, J. Whalen
Nuclear Science and Engineering | Volume 64 | Number 3 | November 1977 | Pages 733-743
Technical Paper | doi.org/10.13182/NSE77-A27102
Articles are hosted by Taylor and Francis Online.
Energy-averaged total neutron cross sections of elemental vanadium were measured from ∼1.0 to 5.5 MeV. Differential elastic and inelastic neutron scattering cross sections were measured from 1.8 to 4.0 MeV. Neutrons corresponding to the excitation of states in vanadium at 321 ± 10, 938 ± 15, 1603 ± 19, 1811 ± 21, 2409 ± 27, ∼2500, 2706 ± 30, and 2773 ± 30 keV were observed. These experimental results were used to deduce an energy-averaged nuclear model suitable for extrapolating the measured values and calculating unmeasured cross sections for applied use.