ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. R. Hofmann, C. C. Meek
Nuclear Science and Engineering | Volume 64 | Number 3 | November 1977 | Pages 713-723
Technical Paper | doi.org/10.13182/NSE77-A27100
Articles are hosted by Taylor and Francis Online.
A model employing Darcy's law has been developed to describe the transient pressure field within interconnected porosity of mixed-oxide liquid-metal fast breeder reactor fuel during hypothetical reactor accidents. Pressure increases are due both to fission gas released from fuel grains and fill gas originally present within fuel pores. Calculations utilizing the model have been performed for an out-of-pile test prior to fuel melting with both clad and unclad conditions being treated. Redistribution of gas from the source region in the relatively high-porosity unrestructured fuel to a low-porosity restructured fuel was shown to exist in all cases considered. Even for the unclad case, significant internal pressurization was predicted by the model, which could prove important in subsequent fuel breakp and motion.