ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
D. C. Barnes, J. U. Brackbill
Nuclear Science and Engineering | Volume 64 | Number 1 | September 1977 | Pages 18-32
Technical Paper | doi.org/10.13182/NSE77-A27073
Articles are hosted by Taylor and Francis Online.
A numerical study of the equilibrium and stability properties of the Scyllac experiment at Los Alamos Scientific Laboratory is described. The formulation of the numerical method, which is an extension of the ICED-ALE method to magnetohydrodynamic flow in three dimensions, is given. The properties of the method are discussed, including low computational diffusion, local conservation, and implicit formulation in the time variable. Also discussed are the problems encountered in applying boundary conditions and computing equilibria. The results of numerical computations of equilibria indicate that the helical field amplitudes must be doubled from their design values to produce equilibrium in the Scyllac experiment. This is consistent with other theoretical and experimental results.