ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Yuji Ishiguro, José Rubens Maiorino
Nuclear Science and Engineering | Volume 63 | Number 4 | August 1977 | Pages 507-509
Technical Note | doi.org/10.13182/NSE77-A27066
Articles are hosted by Taylor and Francis Online.
The singular-eigenfunction-expansion method and the principle of invariance are combined to reduce the two-half-space Milne problem to a regular computational form in the two-group isotropic scattering model. The method used here consists in considering a problem of two contiguous half-spaces with surface sources at the interface. The problem is equivalent to the Milne problem in the sense that the expansion coefficients are to be determined from the same equation. The emergent distributions are obtained from coupled regular integral equations. The expansion coefficients can then be obtained using the halfrange orthogonality relation of the eigenfunctions. Numerical results are reported for light-water media.