ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
S. Langenbuch, W. Maurer, W. Werner
Nuclear Science and Engineering | Volume 63 | Number 4 | August 1977 | Pages 437-456
Technical Paper | doi.org/10.13182/NSE77-A27061
Articles are hosted by Taylor and Francis Online.
A coarse-mesh method for the solution of multidimensional neutron kinetics problems is presented that is based on the approximation of the desired solution by basis functions with local nonoverlapping supports corresponding to the volume elements of the spatial mesh. Integration of the approximating functions over their supports, and exploitation of continuity conditions for neutron flux and current, yields local seven-point difference operators with solution-dependent coupling coefficients. Due to the finite-difference (FD) structure of the resulting matrix equation, any technique developed for FD methods can be used for its solution. However, a novel (“almost implicit”) alternating direction explicit-implicit technique has been developed that is especially suited for coarse-mesh applications. Numerical examples that demonstrate the high efficiency of the method are presented. By using a spatial grid corresponding to the fuel element structure, it is possible to compute power distribution and its time history very accurately (at most, with a several percent error) at an economically tolerable expense.