ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Arnaud Courcelle, Hervé Derrien, Luiz C. Leal, Nancy M. Larson
Nuclear Science and Engineering | Volume 156 | Number 3 | July 2007 | Pages 391-402
Technical Paper | doi.org/10.13182/NSE07-A2706
Articles are hosted by Taylor and Francis Online.
This paper presents a new analysis of the 238U cross sections in the unresolved resonance range, from 20 to 150 keV. Statistical analysis of the resonance parameters in the resolved resonance range with random-matrix theory provides accurate experimental values of strength function, average radiative width and average level spacing for s- and p-wave resonances. Above 20 keV, the simultaneous fit of selected experimental data (average transmission and capture) is performed with a statistical model of nuclear reactions as implemented in the SAMMY code.Compared to previous evaluations, such as those described by Fröhner or by Maslov et al., this work benefits from the accurate transmission data measured by Harvey et al. at Oak Ridge Electron Linear Accelerator, which have never been studied before. This new evaluation was written into the current ENDF format for use in practical applications. This work stresses the need for an improved ENDF format to store average resonance parameters and cross sections in the unresolved resonance range.