ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Vijay K. Dhir, Kin Wong, W. E. Kastenberg
Nuclear Science and Engineering | Volume 63 | Number 3 | July 1977 | Pages 350-356
Technical Note | doi.org/10.13182/NSE77-A27049
Articles are hosted by Taylor and Francis Online.
One-dimensional, nonhomogeneous transient conduction equations in both liquid and solid regions of a volumetrically heated sphere subjected to arbitrary time-independent convective cooling condition at the surface are numerically integrated. The results of numerical integration show that, depending on the relative magnitudes of the volumetric heat generation rate and the surface heat removal rate, the initially molten particle may completely solidify, temporarily solidify and then completely remelt, or have a solid outer crust with an inner molten core. The times needed to attain these quasi-stable states and the solidification and remelting rates prior to attaining these physical states are also computed.