ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
T. Wakabayashi, Y. Hachiya
Nuclear Science and Engineering | Volume 63 | Number 3 | July 1977 | Pages 292-305
Technical Paper | doi.org/10.13182/NSE77-A27041
Articles are hosted by Taylor and Francis Online.
The thermal-neutron behavior in a highly heterogeneous cluster-type plutonium fuel lattice has been studied through the measurements of the dysprosium reaction-rate distribution in a unit cell covering three plutonium fuel elements, four coolant voids, and two lattice pitches. The study included comparison with the results obtained with UO2 fuel. A new technique for locating the foils has been developed, resulting in an accurate measurement of the thermal-neutron flux distribution. Depression of the thermal-neutron flux in the fuel region is larger in the plutonium fuel lattice than in the uranium lattice because thermal-neutron absorption in the plutonium fuel is enhanced by the resonances of 239Pu and 241Pu at 0.3 eV. In addition, the 1/v cross section of plutonium is larger than that of uranium. This property of the plutonium fuel appears markedly at 100% void fraction, but less at 0% because this property is weakened by the presence of H2O coolant. The results of calculations obtained by means of the LAMP-DCA code showed good agreement with experimentally determined data within 5%.