ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. K. Dickens
Nuclear Science and Engineering | Volume 63 | Number 1 | May 1977 | Pages 101-109
Technical Note | doi.org/10.13182/NSE77-A27011
Articles are hosted by Taylor and Francis Online.
Interactions of neutrons with 208Pb have been studied by measuring photon production cross sections. Gamma-ray spectra were obtained at incidentneutron energies of 4.9, 5.4, 6.4, 6.95, 7.45, and 8.0 MeV with a gamma-ray detector system utilizing a 48-cm3 Ge(Li) detector. Nearly monoenergetic neutrons were obtained from the D(d, n) reaction using deuterons obtained from the (pulsed) Oak Ridge National Laboratory 5-MV Van de Graaff accelerator. Time-of-flight was used to discriminate against pulses due to neutrons and background radiation. Extracted differential and total inelastic cross sections have been compared with previous measurements and with data from the ENDF/B evaluation with generally satisfactory results. New information on the level structure of 208Pb is reported. Data were also obtained at En = 5.4 MeV for a sample of natural bismuth, and new information on the level structure of 209Bi was obtained. Differential gamma-ray production cross sections were obtained, and the total inelastic cross section at En = 5.4 MeV was deduced from these data.