ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
John A. Adams, R. R. Roy
Nuclear Science and Engineering | Volume 63 | Number 1 | May 1977 | Pages 41-47
Technical Paper | doi.org/10.13182/NSE77-A27002
Articles are hosted by Taylor and Francis Online.
Protons from 252Cf fission have been studied to determine their origin by using a ΔE, E detector particle telescope. Both fission- and nonfission-related events are discussed as possible sources of the observed proton energy spectrum. The increased yield of low-energy protons, which peak at ∼3.2 MeV, seems to be due mainly to background (α,p) reactions. Evidence of polar proton emission is discussed and gives an estimated polar proton emission yield of 2.83 ± 0.18 × 10−5 per fission, with a most probable energy of 10.0 ± 0.2 MeV and full-width at half-maximum (FWHM) of 7.6 ± 0.2 MeV. The yield of tripartition fission-related protons was then estimated to be 3.50 ± 0.20 × 10−5 per fission, with a most probable energy of 6.6 ± 0.2 MeV and an FWHM of 7.0 ± 0.2 MeV