ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC’s David Wright visits the Hill and more NRC news
Wright
The Nuclear Regulatory Commission is in the spotlight today for three very different reasons. First, NRC Chair David Wright was on the Hill yesterday for his renomination hearing in front of the Senate’s Environment and Public Works Committee. Second, the NRC released its updated milestone schedules according to the Nuclear Energy Innovation and Modernization Act (NEIMA) and the executive orders signed by President Trump last month; and third, as reported by Reuters on Tuesday, 28 former NRC officials have condemned the dismissal of Commissioner Hanson earlier this month.
Alberto Talamo, Waclaw Gudowski
Nuclear Science and Engineering | Volume 156 | Number 2 | June 2007 | Pages 244-266
Technical Note | doi.org/10.13182/NSE07-A2700
Articles are hosted by Taylor and Francis Online.
In the present study we investigate the influence of the fuel axial shuffling and the operational control rod maneuvering on the performances of the one-pass (no reprocessing) deep-burn incineration of light water reactor waste in the gas turbine-modular helium reactor. After an irradiation period, the fuel axial shuffling schedule has to take into account the fuel depletion profile generated by the adjustments of the position of the operational control rods, because the insertion of the rods strongly alters the neutron flux shape. We aimed at implementing a numerical simulation as close as possible to a real scenario and therefore took advantage of the powerful geometrical modeling capability of the MCB code to describe the reactor in a detailed three-dimensional geometry model in which we simulated over 120 different burnable materials, each of them undergoing a different neutron flux intensity. We adjusted the position of the control rods every 90 effective full-power days of irradiation to maintain the core as close as possible to the critical condition; thereafter, we recalculated the neutron flux and cross sections by a new MCNP/MCB run. At the present time, this sophisticated approach can be realized only by a computer cluster of ten 64-bit processors working in parallel mode.The fuel axial shuffling adds from 3 to 5% to the transmutation rates of 239Pu, plutonium, and all actinides, which range from 80 to 86, 50 to 53, and 46 to 48%, respectively; the present results are 5 to 14% less compared to the case of a two-pass (reprocessing) deep burn. The efficiency of transmuting minor actinides has been estimated by comparing the long-term radio-toxicity of the fresh and irradiated americium and curium fuel; this comparison revealed that it is not worthwhile to transmute americium and curium in the current design of the gas turbine-modular helium reactor by a one-pass deep burn.