ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Alberto Talamo, Waclaw Gudowski
Nuclear Science and Engineering | Volume 156 | Number 2 | June 2007 | Pages 244-266
Technical Note | doi.org/10.13182/NSE07-A2700
Articles are hosted by Taylor and Francis Online.
In the present study we investigate the influence of the fuel axial shuffling and the operational control rod maneuvering on the performances of the one-pass (no reprocessing) deep-burn incineration of light water reactor waste in the gas turbine-modular helium reactor. After an irradiation period, the fuel axial shuffling schedule has to take into account the fuel depletion profile generated by the adjustments of the position of the operational control rods, because the insertion of the rods strongly alters the neutron flux shape. We aimed at implementing a numerical simulation as close as possible to a real scenario and therefore took advantage of the powerful geometrical modeling capability of the MCB code to describe the reactor in a detailed three-dimensional geometry model in which we simulated over 120 different burnable materials, each of them undergoing a different neutron flux intensity. We adjusted the position of the control rods every 90 effective full-power days of irradiation to maintain the core as close as possible to the critical condition; thereafter, we recalculated the neutron flux and cross sections by a new MCNP/MCB run. At the present time, this sophisticated approach can be realized only by a computer cluster of ten 64-bit processors working in parallel mode.The fuel axial shuffling adds from 3 to 5% to the transmutation rates of 239Pu, plutonium, and all actinides, which range from 80 to 86, 50 to 53, and 46 to 48%, respectively; the present results are 5 to 14% less compared to the case of a two-pass (reprocessing) deep burn. The efficiency of transmuting minor actinides has been estimated by comparing the long-term radio-toxicity of the fresh and irradiated americium and curium fuel; this comparison revealed that it is not worthwhile to transmute americium and curium in the current design of the gas turbine-modular helium reactor by a one-pass deep burn.