ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Makoto Ueda, Mitsuo Matsumoto, Tohru Haga
Nuclear Science and Engineering | Volume 62 | Number 3 | March 1977 | Pages 559-570
Technical Note | doi.org/10.13182/NSE77-A26992
Articles are hosted by Taylor and Francis Online.
The control rod effect has been experimentally studied in the Deuterium Critical Assembly (DCA) by using annular absorbers that simulate control rods of the FUGEN reactor, a prototype heavy-water-moderated, boiling-light-water-cooled, pressure-tube-type reactor. The DCA cores for this experiment are of the 1.2%-235U-enriched UO2 lattices, and consist of 28-pin fuel clusters arranged in a square array of 22.5-cm lattice pitch. The experiment has been carried out with various control rod patterns and with varying coolant void fraction. Experimental results were analyzed by the “absorption area method,” which was employed in the FUGEN control rod design calculations. The calculated reactivity worth agreed with the experiment within ±10%. The calculations somewhat overestimated the absorber worths in the nonvoided core and underestimated them in the voided core. This tendency was found to be greatly improved by considering the anisotropy effect in the migration area of the cluster lattice. The experimental results were also analyzed by the “logarithmic derivative method.” This method more poorly predicted the worths, but described better the flux shape around the rods.