ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D. K. Olsen, G. de Saussure, R. B. Perez, E. G. Silver, F. C. Difilippo, R. W. Ingle, H. Weaver
Nuclear Science and Engineering | Volume 62 | Number 3 | March 1977 | Pages 479-501
Technical Paper | doi.org/10.13182/NSE77-A26986
Articles are hosted by Taylor and Francis Online.
The transmissions of 0.52- to 4000-eV neutrons through 3.62-, 1.08-, 0.254-, 0.0762-, 0.0254-, 0.0127-, and 0.0036-cm-thick samples of uranium, enriched in the 238U isotope, have been measured at 42 m with a 1.0-mm-thick 6Li glass detector using the Oak Ridge Electron Linear Accelerator pulsed neutron source. To obtain resonance parameters, the seven transmissions of neutrons having energies ranging from 0.52 to 1086.8 eV have been shape-fitted by least-squares analysis to a multilevel Breit-Wigner cross-section formalism with “picket-fence” terms to account for truncation effects. This simultaneous fit yielded a χ2 per degree of freedom near unity. Averaged over this energy range, an s-wave strength function of (0.968 ± 0.036) × 10-4 cm and an effective radius of (0.944 ± 0.005) × 10-12 cm were obtained. In addition, these transmission data yielded an average radiation width of 23.1 ±1.0 meV for the 12 lowest energy s-wave resonances with radiation widths of 23.0 ± 0.8, 22.8 ± 0.8, and 22.9 ± 0.8 meV for the 6.67-, 20.9-, and 36.8-eV resonances, respectively. The derived radiation widths for these three resonances are shown to depend on the cross-section formalism employed. This work suggests that a multilevel formalism with truncation compensation is required to adequately represent the 238U total cross section.