ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. R. Bierman, E. D. Clayton
Nuclear Science and Engineering | Volume 61 | Number 3 | November 1976 | Pages 370-376
Technical Paper | doi.org/10.13182/NSE76-A26923
Articles are hosted by Taylor and Francis Online.
The results from a series of criticality experiments with three different mixtures of oxides of plutonium and uranium are presented. The fuel mixtures consisted of 235U-depleted uranium homogenized with ∼8, 15, and 30 wt% plutonium and blended, homogeneously, with polystyrene to achieve H:(Pu + U) atomic ratios of ∼7, 3, and 3, respectively. Critical sizes are given for rectangular parallelepipeds of each of the fuels fully reflected with a methacrylate plastic (Plexiglas). Critical sizes are also given for unreflected parallelepipeds of the 30-wt% plutonium-enriched fuel mixture. For the 30-wt% plutonium-enriched mixture, sufficient fuel was available to permit determining that the critical thickness of a fully reflected slab of this material, infinite in two dimensions, was 12.93 + 0.14 cm. Comparisons were made between the critical assemblies and calculational results using ENDF/B-III cross sections and the KENO and DTF-IV computer codes. Wherever comparisons could be made, the DTF-IV and KENO results were within 1% of each other; however, some of the comparisons between calculations and experiments differed by 2 to 3% in keff.