ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. Weisman, T. Ake, R. Knott
Nuclear Science and Engineering | Volume 61 | Number 3 | November 1976 | Pages 297-309
Technical Paper | doi.org/10.13182/NSE76-A26916
Articles are hosted by Taylor and Francis Online.
The ability of one-dimensional momentum balances to predict behavior during two-phase oscillatory flow has been examined. Flow oscillations in a Freon-Freon vapor system were induced by cycling a three-way valve so as to divert a varying portion of the total flow from the test section. The data taken included the phase shift between the pressure and flow curves and the head fluctuation to flow fluctuation ratio. These data were compared with theoretical predictions obtained via the impedance method. Although some discrepancies between predictions and measurements were observed, the discrepancies were generally within the range of error associated with the measurement and analysis techniques used.